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Effects of Quantum Delocalization on Structural Changes in Lennard-Jones Clusters’
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The ground states of Lennard-Jones clusters (LJ,) for sizes up to n = 147 are estimated as a function of the
de Boer quantum delocalization length, A, using the variational Gaussian wavepacket method. Consequently,
the n—A phase diagram is constructed showing the ranges of stability of various structural motifs, including
the Mackay and anti-Mackay icosahedra, several nonicosahedral but highly symmetric structures, and liquidlike
(or disordered) structures. The increase in A favors more disordered and diffuse structures over more symmetric
and compact ones, eventually making the liquidlike structures most energetically favorable.

Introduction

Atomic clusters are frequently studied to investigate the
fundamental nature of finite, many-body systems. They exhibit
rich thermodynamic properties and display complex behavior
that is sensitive to their size and the form of the interatomic
potential. Additionally, with an increased interest in nanoscale
materials and devices, they provide a simple means for
understanding the physical characteristics, and particularly the
quantum mechanical behavior, of these microscopic systems.

Rare gas atomic or molecular (e.g., hydrogen) clusters are
often simulated using the Lennard-Jones (LJ) pair potential
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Despite the apparent simplicity of the LJ model and relative
ease of its implementation, the LJ clusters display very complex
behavior; obtaining accurate, well-converged results in simula-
tions of the LJ clusters has always been a challenge for
theoreticians. The design and optimization of better, more
efficient algorithms is often ancillary to their study and
comprises a large area of research in itself.

With some notable exceptions, for sizes n < 1000 the global
minima structures of LJ, clusters are dominated by the icosa-
hedral motif,!> whereas the closed-packed structures start to be
favorable only around n ~ 10°.3 The icosahedral global minima
structures are typically characterized by the existence of a
complete icosahedral core (n = 13, 55, 147,...) surrounded by
an overlayer, which can adopt two different packings: the anti-
Mackay (n = 14 to 30, 56 to 81, 85,...) or Mackay (n = 31 to
55, 82 to 147,...). There are several exceptions corresponding
to clusters (n = 74 to 76, 98, 102 to 104,...) that adopt
nonicosahedral structures as their global minimum configuration.
Some structures representative of these structural motifs are
shown in Figure 1. The notations are similar to those of ref 4.

At finite temperatures, local energy minima start to contribute
to the equilibrium properties of the cluster. The presence of
different structural motifs that may be favorable for certain
ranges of the parameters (n or 7T) gives rise to size- or
temperature-induced structural transitions resulting from com-
petition between the energy and entropy. Even for relatively
small sizes (n &~ 20), the number of thermodynamically relevant
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Figure 1. Selected images representative of the structural motifs
encountered in the LJ, clusters (n < 147). The notations are similar to
that of ref 4; namely, 1,(13), I4(55), and 1,(147) define the complete
Mackay icosahedra with n = 13,55, and 147. I,(13)" represents a
structure (n > 13) corresponding to a 13-atom complete Mackay
icosahedron surrounded by an anti-Mackay overlayer. 1,(55)" defines
an incomplete icosahedron (n < 55) based on I,(55). The octahedral
(fcc), tetrahedral, and decahedral motifs are labeled, respectively, Oy,
Ty, and Dy,. Liquidlike or disordered structures are labeled “L”.

minima for a LJ cluster is already very large and keeps
increasing exponentially with size. Moreover, these minima are
often separated by large barriers, leading to severe sampling
problems. The replica exchange Monte Carlo method’ is
commonly employed to deal with such problems. The first
successful application of the latter to an LJ cluster (n = 38)
was reported relatively recently,® which was then followed by
a series of calculations covering a large range of sizes.”” !
Reference 8 reports the size-temperature phase diagram of LJ,
clusters for ranges up to n = 147. Despite an apparent superiority
of the replica exchange Monte Carlo to other methods, even
with this technique, the computational times are usually very
long. (For some extreme examples of poor convergence of the
replica exchange method, see ref 11.)

Notwithstanding the difficulties of a classical simulation of
LJ clusters, accurately modeling the quantum effects is further
challenging. For smaller masses and at low temperatures,
quantum effects become considerable, and if it is desired to
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elucidate the properties of real systems, accurately modeling
them becomes necessary.

A quantum monatomic LJ system is conveniently param-
etrized by a single parameter, the de Boer quantum delocaliza-
tion length A = (h/(me)"*)/o, which effectively measures the
quantum delocalization of the ground-state wave function
relative to the system scale defined by o. For a given cluster
size, the ground-state configuration depends on A, and with an
increase (or decrease) in this value, structural changes occur,
analogous to those induced by a change in temperature. For
example, the study based on the path integral Monte Carlo
(PIMC) method demonstrated that the melting of quantum LJ;;
cluster is facilitated by an increase in A.'? In another paper,'?
the effects of quantum delocalization on the thermodynamic
properties of several L], clusters were systematically studied
using various approximate approaches. The more recent studies'*!>
demonstrated that whereas LJsg (A = 0) possesses the octahedral
ground-state configuration at 7 = 0, along with Arsg (A = 0.03),
the Nesg cluster (A = 0.095) adopts the more disordered anti-
Mackay configuration. Therefore, in addition to size-induced
and temperature induced structural transitions, those induced
by quantum effects can occur as well.

Quantum calculations using the PIMC methods, when
converged, provide essentially exact results. However, when
trying to describe structural transformations accurately using
PIMC, the computation times can be excessively long and
increase dramatically with decreasing temperature. The sampling
problem already exists, such as for the characterization of a
structural transition, where at least two basins of attraction
(usually separated by a large energy barrier) must be sampled,
regardless of whether the quantum effects are included in the
simulation. In the PIMC framework, this corresponds to the
sampling of the classical configuration space by the centroid of
the path, whereas the sampling problem is alleviated by the
presence of an additional much shorter time scale associated
with the path variables describing the shape of the path. Strong
quantum effects (such as quantum delocalization, tunneling, or
both), as in helium systems, may effectively simplify the
configuration space, removing the ergodicity problem and thus
making the PIMC converge rapidly. However, it is the inter-
mediate, that is, weakly quantum regime that is most challenging
for accurate quantum simulations, especially for systems that
undergo structural transformations at low temperatures. Ex-
amples of such systems include neon clusters, and, very likely,
hydrogen clusters. Perhaps not surprisingly, the Ne;; cluster is
the largest neon system to undergo a low-temperature (7'~ 10
K) structural change for which a converged heat capacity curve
computed by the PIMC was reported.'® Larger neon clusters,
for example, Nesy, which undergo low-temperature structural
changes'” seem at the moment to be too difficult to be treated
accurately by PIMC.8

Recently, several groups reported results on (H,), clusters
using diffusion Monte Carlo (DMC)," PIMC,*?! and path-
integral ground state (PIGS)?> methods. These calculations
focused on studying the effects of either the superfluidity (i.e.,
taking into account the particle exchange symmetry) or the
ground-state structure as a function of cluster size. All of the
above-mentioned methods are, in principle, exact when con-
verged. However, the results between any two references
disagreed with each other on the detailed behavior of the
chemical potential. (See below.) The lack of consensus in these
results indicates that the sampling problems present a big
challenge for the path-integral-based methods.
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Faced with these difficulties, when studying the weakly
quantum systems, it seems to be practical to use approximate
methods that have better sampling properties but may still
adequately account for the quantum effects. One such method
utilizes the (Wigner—Kirkwood or Feynman—Hibbs) effective
potentials.'”> Another approach is based on the harmonic
approximation (HA)."> To obtain the ground states using the
HA for the entire range of A, one only needs to know the
coordinates and the normal-mode frequencies of the local
minima that are candidates for the ground-state at the corre-
sponding values of A. For example, ref 3 presents an HA
analysis of the ground-state structures of LJ clusters for specific
values of A corresponding to different rare gas atomic clusters.
Whereas the HA is straightforward to implement and it may be
adequate for nearly classical cases, for example, xenon (A ~
0.01), krypton (A ~ 0.016), or argon (A ~ 0.03), in a more
quantum regime, for example, corresponding to neon (A =
0.095), the predictions of the HA are very crude.

Our method of choice for the estimation of cluster ground
states is the variational Gaussian wavepacket (VGW) meth-
od.!*151723 The VGW is exact for a harmonic potential, whereas
it is manifestly approximate for a general anharmonic potential.
However, this method demonstrated its practicality, specifically
for the case of Nesg (see ref 14), for which the VGW energies
(more precisely, the energy differences of different cluster
configurations) agreed very well with those computed by the
PIMC method. We note here that the Gaussian form for the
wave function is not invariant with respect to rotations of the
cluster; that is, the rotational degrees of freedom are not
represented correctly by the VGW, leading to a systematic error
for the total energy of the cluster. Whereas for a sufficiently
large cluster, this error is not significant, most importantly, it
does not affect the energy differences between different cluster
configurations because it is not sensitive to the latter.

In our previous work,'> we used the VGW method to
investigate the effect of changing the quantum parameter, A,
on the ground-state configuration and energy for the range of
clusters, LJ3;—45, which, with the exception of L35, possess the
Mackay classical global minimum. From this, structural changes
as a function of A were investigated, and for the size range
considered (except n = 38), only two structural motifs were
observed, I,(55)” and I;(13)*, that is, the Mackay and anti-
Mackay icosahedra. Consequently, a “phase diagram” showing
the stability ranges of the above structural motifs was con-
structed. In the present work, we extend our study up to the
size n = 147, adding to the existing phase diagram.

The article continues with a brief but comprehensive descrip-
tion of the VGW approximation for determining the ground-
state of a cluster, followed by a section comprising the
computational results and discussion.

Variational Gaussian Wavepacket Method for Estimating
the Ground States of Clusters

In this section, we describe the method of estimating the
ground-state energy and wave function of a many-body system
using VGWs.

In Cartesian coordinates, the Hamiltonian is given by

2
A= - %VTM*‘VJr U(r) )
with diagonal mass matrix M = diag(m,). By r := (ry,..., 1,)7,
we define a 3n vector containing the particle coordinates. V :=
(V1....,V,)T represents the gradient.
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The key assumption is that the ground-state wave function
is well localized near one of the basins of attraction, typically
one of the local potential energy minima. The trial wave function
is then chosen in the form of a Gaussian

Y = exp —%(r -@'G'c—q +vy 3

with the following variational parameters: the Gaussian width,
G (a3n x 3nreal symmetric and non-negative-definite matrix),
the Gaussian center, q (a real 3n vector), and a real scale factor,
y. The ground-state energy is then estimated by minimizing the
energy functional

B = S’ @)

with respect to the above specified variational parameters.

Before proceeding further, the following points are important
to emphasize.

(i) The VGW gives an exact solution for a Hamiltonian with
harmonic potential; having the full-width matrix G is essential
unless one uses the normal mode coordinates, which cannot
correspond to a general case.

(i1) It may appear that the VGW approximation is essentially
equivalent to the harmonic approximation, in which each local
minimum yields a quantum state, also being a Gaussian wave
function. However, the latter Gaussian does not minimize the
energy functional (eq 4) involving the actual Hamiltonian but
rather its particular harmonic approximation. Moreover, the
VGW approximation may still be adequate as long as the true
ground-state wave function retains a bell-like shape, but it is
possibly delocalized over more than one local minimum.'# In
the latter case, neither harmonic nor even anharmonic ap-
proximations would provide a qualitatively correct picture.

(iii) To obtain a systematic improvement of the solution, one
may be tempted to generalize the single-Gaussian ansatz (eq 3)
to a linear combination of Gaussians. Unfortunately, no matter
how appealing the idea is, this possibility, at least for clusters,
is illusory. First, without going into detail, numerically, the
global optimization involving multiple Gaussians is an extremely
difficult problem unless the Gaussian parameters are fixed.
Second, if the basis contains more than one Gaussian, even if
localized in a single local energy minimum, its size must be
very large, otherwise the results could, in a certain sense, be
worse than those from using a single Gaussian. For instance,
note that because of the rotational invariance around the Euler
angles for each local minimum, an adequate Gaussian basis must
span at least the whole 3D rotational manifold. Third, having a
Gaussian basis localized over more than one local minima is
simply unfeasible. Finally, one has no way to assess the
numerical errors associated with the multi-Gaussian approxima-
tion, for example, because these errors are partly due to the
poor convergence of a particular global optimization attempt.

(iv) Minimization of E(q, G, y) in eq 4 corresponds to the
solution of a nonlinear global optimization problem, which is
at least as difficult as minimization of the potential energy for
the underlying classical system. As such, it should contain a
local minimization step (called here quantum quenching) in
which starting with some initial configuration qq the closest local
minimum of E(q, G, y) is found. Because, numerically, the
energy functional (eq 4) possesses multiple local minima, to
find the global minimum, one must perform a search over the
whole configuration space. While the quenching step is system-
and algorithm-specific, a search for the global minimum may
use general global optimization strategies.
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TABLE 1: Parameters of the Gaussians (cf. Equation 5)
Used to Approximate the LJ Potential, V(ry) = 4[(r;) > —
ry)

p Cp Q,

1 31279960.65933084 35.14249661727566
2 1668963.963961670 21.73050942017830
3 91092.34069670191 13.25329843520143
4 3354.805129558428 7.60982070333635
5 —8.46844309983970 1.67180258175699
6 —0.38418467585210 0.50261814095335

To utilize eq 4 efficiently using the Gaussian ansatz (eq 3),
the arising integrals are most conveniently evaluated by rep-
resenting the pair potential as a sum of Gaussians

p

V(ry) = ¢, exp(—o,r) (5)
p=1

with certain parameters ¢, and o, (Re o, > 0). For the LJ

potential (eq 1), this approximation has proven to be practical

with as few as three terms.?>?* In the current work, for even

more accurate approximation, a total of six Gaussians are

used'>? with parameters given in Table 1.

The VGW is further characterized by two different forms,
the fully coupled (FC) VGW, corresponding to the full 3n x
3n matrix G, and the single particle (SP) VGW,? corresponding
to a block-diagonal matrix G composed of n 3 x 3 blocks.
Whereas the SP-VGW does not provide an exact solution for a
harmonic potential, numerically, it scales as ~n? with the system
size n. (As for pairwise potentials, it requires an evaluation of
an order of n? terms.) The numerical scaling for the FC-VGW
is ~n® (because of the need to evaluate the determinant of the
full 3n x 3n matrix G), which may become computationally
very demanding for sufficiently large systems.

The quantum quenching can possibly be performed by
standard local minimization algorithms, as, for example, the
steepest descent. However, because the VGW has already been
implemented in the framework of quantum statistical mechanics
calculations (see, e.g., refs 14 and 23), the quantum quenching
here (as well as in refs 14 and15) is carried out by solving the
system of ordinary differential equations

d%G = —GV'1),G + RM!

d

dy = —Gv

i€ VO, ©®
d

_ 1 T _
o7 = —gTVVULE) — (U)y

with initial conditions
q(t) = q,
G(ry) = ti*M ™! (7
v(Ty) = —15U(qp)
which are defined for a sufficiently small but otherwise arbitrary
value of 7.
In eq 6, (U)y represents the average (over the Gaussian

wavepacket W) potential, (VU)y represents the averaged force,
and {(VVTU)y represents the averaged Hessian

(U=l UlpXply) ™!
(VU= I VUIp Xy (8)
(VV' Uyyi=@IVV UlpXyplyp) ™

Given the Gaussian representation of the potential energy (eq
5), the following expressions can be used to evaluate the
Gaussian integrals arising in eq 8.
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Define the 3 x 3 matrices
— -1
A;=G; + G; — G; — Gy
Z(0):=0o — a’(a + A"

where G;; denotes the corresponding 3 x 3 block of the matrix
G. The analytic expression for the 3D Gaussian averaged over
the variational Gaussian wavepacket then reads

Al.j+a||

A

J

(exp(—ary)) = exp[—q;Z;(0)q;]  (9)

where q;; := q; — q;. The elements of the averaged gradient are

(V exp(—ary)) = —2Aexp(—or))Z(0)q;  (10)

for k = i,j and (V, exp(—au})) = 0, for k = i, j. Finally, the
four nonzero blocks of the second-derivative matrix are given
by

(VIViT exp(—(xr?j)) = (VJV/T exp(—arizj))

= - (VIVJ-T exp(—(xr?j)) = —(VJ-V,‘T exp(—arizj)) (11)
2 Tr,T T

2<GXP(—(1",;,~)>(2ZU((1)Q,;i(I,;;Z,;,(OL) - Z,‘j(a))

The time-dependent wavepacket ¥ = W(q, G, y) defined by

the time-dependent parameters q = q,;, G = G, and y = y, is
an approximation of the solution of the Bloch equation

W(q, 1) = ¢ W(q,,7) (12)
with W(qg, 0) := o(r — qp).
Now define
(W(q,, /2)|HIW¥(q,, 7/2))
E(qy 1) =" - (13)

~ (W(q, 72 (g, 72))

In the T — oo limit, independent of the initial configuration,
qo, the exact solution of the Bloch equation, W(qg,o0), will
always coincide with the true ground-state wave function and
so will the energy, E(qp,2). However, with an approximate
asymptotic solution, the stationary VGW will depend on ¢ and
will usually become localized in the vicinity of qo. Therefore,
even in the 7 — oo limit, E(qo, 7) can only represent an upper-
bound estimate for the true ground-state energy, whereas for
obtaining an adequate estimate of the ground-state energy and
wave function, one needs to sample a large number of stationary
Gaussian states.

The energy E(qp,7) can be calculated by direct evaluation of
eq 13. However, it is easier to use

d
E(q, 1) = o~ In p(qy, 7) (14)
T
where we have defined the time-dependent density

p(qq, 7):=(W(qy, 7/2)IW(qy, 7/2)) (15)

Assuming the Gaussian form for ¥ we have

—1/2
exp [2y((/D)]

P(do:7) = (47‘[)*3“/2||G(17/2)|

As in ref 15, the initial configurations (q,) to be quenched
are generated by performing long replica exchange Monte Carlo
simulations for a reference classical system. The configurations
are taken from the random walks running at different temper-
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atures once in many Monte Carlo steps (e.g., 10° because it is
numerically very cheap). The highest replica temperature in the
classical simulation is chosen to be high enough to ensure the
ergodicity of all of the random walks. To warrant an ade-
quate sampling of the whole configuration space, that is, to
include all relevant structural motifs in the quantum quenching
procedure, the initial configurations for quenching are selected
from a sufficiently wide temperature range.

Here the reference classical system is defined by the actual
potential energy U(r), although a more efficient sampling could
be achieved by using an effective potential.

Results and Discussion

In ref 15, only LJ, clusters with sizes n = 31 to 45 were
considered. LJ3; is the smallest cluster with global minimum
belonging to the I,(55)” motif. Ll4s is the largest cluster that
can have a structure defined by I;(13)" with a single anti-Mackay
overlayer. The present article extends the ground-state calcula-
tions up to n = 147, the largest size of a three-layer cluster
with icosahedral symmetry. For the two-layer clusters, here we
included all remaining sizes (n = 46 to 55). As n increases, the
VGW calculations become increasingly more time-consuming.
To reduce the computational burden, we considered only
(approximately) every fifth three-layer cluster. LJs, is the
smallest cluster with global minimum belonging to the I,(147)"
motif, so in addition, to better describe the onset of the I;,(147)~
— I(55)" transition, we analyzed the ground states for sizes n
= 82 to 89, at least in the range of the low A values. We also
analyzed the low-A range for all of the cases of nonicosahedral
global energy minima (n = 75 to 77, 98, 102 to 104).

The classical replica exchange method’ was used to sample
the configuration space. The details of the classical simulation,
which are not of crucial importance for this particular applica-
tion, can be found in ref 8. Depending on the cluster size, the
total number of replicas varied between 10 and 15, with the
maximum temperature Ty,,x = 0.4. Here and throughout the arti-
cle the reduced units for the temperature, ekg', and energy (¢)
are used. To convert to the actual temperature or energy for a
particular species, one needs to know the corresponding LJ
parameter, €. For example, for neon, €(Ne) = 35.6kg K.

The configurations for quenching were selected from several
(typically eight) random walks, once in every 10° MC steps,
running at temperatures around Mackay/anti-Mackay and anti-
Mackay/liquid transitions in the corresponding classical system.®
For each cluster, this resulted in a total of about 8 x 10*
configurations. For each configuration, the quantum quenching
was first performed using the SP-VGW with A = 0.19 and 0.30
uptor =15 (or T=0.2).

At the end of the replica exchange simulation, for each of
the A values used, the 100 lowest energy configurations were
retained. The latter were then quenched again but now using
the FC-VGW. In addition, we made sure that for each n, the
global classical potential energy minimum?® was also included.
Each of the above quenched configurations was then propagated
in A using a fine grid in the range A € [0.00001, 0.32].

To capture more liquidlike configurations for larger sizes (n
> 90), quenching was also performed at A = 0.33. However,
we note that at this and higher values of A, the clusters become
very unstable with respect to evaporation. (This problem could
be dealt with by using a constraining potential rather than a
constraining box, as implemented in the present study.) There-
fore, to produce the energy curves E;(A) for even higher values
of A, we used curve extrapolation rather than quenching.



7398 J. Phys. Chem. A, Vol. 113, No. 26, 2009

0.3 T T 5 r T E 7 3 T T ¥ ¥ F g T L5 5

1,(147)

3 T I S N S e S (e
015 0.1 0.2 0.3

Figure 2. Correlation diagrams for LJ;5s and LJ;;5 showing the relative
energies per atom (in units of €) of various configurations, AE(A) :=
[E(A) — E(A)]/n, as a function of A, where E(A) is the cluster energy
for ith configuration, with i = 0 corresponding to the global classical
energy minimum. Each band represents a particular structural motif,
as indicated in the Figure.

For each cluster size n we constructed a correlation diagram
displaying the energy curves, E(/A), generated by the procedure
described above. Two examples of such diagrams are shown
in Figure 2. The energy curves are generally continuous in A,
whereas the discontinuities sometimes occur for liquidlike
configurations, indicating that at certain A values these con-
figurations become unstable. Such an instability is expected
because liquidlike local minima are not deep, and the energy
barriers separating them are not high. For each A, the config-
uration having the lowest energy provides an estimate for the
ground-state energy and structure. The structural identification
was done either by using the orientational bond-order parameters
Qs and Q4% or by visual inspection. We note that no matter
how many configurations have been sampled, the actual number
of local minima is always orders of magnitude larger; that is,
there is always a possibility that the lowest energy configuration
has not been found. This is especially true for the liquidlike
configurations. However, as can be seen from the diagrams, the
energies of the sampled configurations tend to form bundles,
each bundle corresponding to a particular structural motif. The
energy curves within a single bundle are very close (often
crossing each other and thus changing their relative stability).
The latter circumstance makes us believe that even with the
limited sampling of the configuration space, our conclusions
about the ground-state energy and structure as a function of A
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Figure 3. Same as Figure 2 but for LJ,o, and depicting only the lowest
energy curve for each structural motif. The structural transitions occur
where the curves intersect each other.
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Figure 4. Four configurations of LJ;y, cluster involved in Figure 3.
The darker color is used to identify the core atoms in the Mackay and
anti-Mackay structures. The A and 7 axes identify the values of the
corresponding structural transitions for respectively quantum (7" = 0)
and classical (A = 0) cases.

are correct, at least qualitatively, assuming that the Gaussian
approximation is adequate.

The analysis of the correlation diagrams for the cluster sizes
considered resulted in the identification of the stability ranges
of the structural motifs depicted in Figure 1. Each of the
nonicosahedral structures (O, Ty, Dy) becomes unstable at a
certain (sometimes very small) value of A. One such example
is the LJjp, cluster, which, in addition to the two generic
transitions, Iy(147)” — 1,(55)" and 1,(55)" — L, undergoes the
Dy, — 1,(147)" transition at A &~ 4.1 x 1073, The corresponding
correlation diagram, which shows only one energy curve per
structural motif, is given in Figure 3. The four ground-state
structures involved in this Figure are shown in Figure 4.

All of the identified A values corresponding to the structural
transformations in LJ, clusters are summarized in Table 2. The
resulting “phase diagram” that shows the stability regions for
different structural motifs as a function of n and A is given in
Figure 5. This Figure also shows the size—temperature (n—7)
phase diagram of the classical (A = 0) LJ, clusters.®!! There is
a striking resemblance of the two diagrams because in each of
them, one can find the same structures stable over certain ranges
of parameters. However, one must be careful in characterization
or interpretation of the “disordered” or “liquidlike” structures.
In particular, “liquidlike” does not mean “liquid”. The former
is characteristic of the structure that is disordered, whereas the
latter usually refers to certain kinetic properties of the state.
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TABLE 2: Values of A at Which the
Quantum-Mechanically-Induced Structural Transformations
Occur in L], Clusters®

n Ns—s /\M—aM(L) n As—s /\M—aM(L) An-L
31 0.0167 60 0.2508
32 0.0248 65 0.2169
33 0.0345 70 0.2675
34 0.0240 75 0.0368 0.2760
35 0.0458 76 0.0166 *

36 0.0772 77 0.0179 *

37 0.0657 80 0.2945

38 0.0821 0.0895 82 0.0262 0.3081

39 0.1211 83 0.0525 *

40 0.1121 84 0.0344 *

41 0.1071 85 0.3269

42 0.1149 86 0.0094 *

43 0.1269 87 0.0282 *

44 0.1266 88 0.0488 *

45 0.1538 89 0.0997 *

46 0.1712 90 0.1153 0.3213

47 0.1970 95 0.0807 0.3442

48 0.2128 98 0.0008 0.1361 0.3406

49 0.2282 100 0.1441 0.3340

50 0.2446 102 0.0041 0.1169 0.3222

51 0.2689 103 0.0050 * *

52 0.2930 104 0.0025 * *

53 0.2918 105 0.1078 0.3403

54 0.2810 110 0.1519 0.3477

55 0.2737 115 0.1116 0.3540
120 0.1090 0.3536
125 0.1569 0.3501
130 0.2035 0.3678
135 0.2333 0.3857
140 0.2841 0.3962
145 0.3062 0.3890
147 0.3102 0.4121

“Labels “M” and “aM” define, respectively, the Mackay and
anti-Mackay structural motifs; “s — s” stands for solid—solid
transition. * means that the corresponding value has not been
computed. The anti-Mackay and liquidlike motifs for the two-layer
clusters (n < 55) could not be well distinguished.

Note that just like a glass state of a bulk system, a disordered
state of a cluster in its ground state is actually completely frozen,
although from the structural point of view, these states cannot
be distinguished from those obtained by quenching truly liquid
configurations of the cluster.

Quantum delocalization always stabilizes the anti-Mackay
relative to the Mackay structure with the well-identified
quantum-mechanically induced Mackay/anti-Mackay transition.
Further increase in A eventually destabilizes the anti-Mackay
structure, resulting in the least-ordered liquidlike structure.
However, for small two-layer clusters, we were not able to
clearly distinguish between liquidlike and anti-Mackay struc-
tures. The probable reason is that the 13-atom icosahedral “core”
is typically not unique for an anti-Mackay structure (i.e., there
may be several 13-atom subclusters having the same arrange-
ment of the complete icosahedron), whereas the 12-atom
coordination is also characteristic of liquidlike structures.
Interestingly, a similar difficulty was encountered when analyz-
ing the temperature-induced structural changes in classical LJ,
clusters,® for which the liquidlike and anti-Mackay structural
motifs could clearly be distinguished only for three-layer clusters
(55 < n = 147), the existence of the well-ordered complete-
icosahedral 55-atom core being a unique property of the
icosahedral motif. For the latter clusters, the heat capacity curve
also displays a sharp peak at the temperature of the I,(55)" —
L transition (also identified as the “core melting transition”).

J. Phys. Chem. A, Vol. 113, No. 26, 2009 7399

He
0.4 L
03—
] 2 <H,
< E
02 . . <D,
1,(13) 1,(55)
0.1+ 3 —
B 1 (147) -
1 M ] (147)
] h —Ar
0+ ~Xe

30 40 50 60 70 80 90 100 110 120 130 140
n

0.4

o
(]
TR WY VAW W 1 TS Y A TR O T

T
Q
[

il

1,(147)

L e L e e L L

PP AT B

T
30 40 50 60 70 80 90 100 110 120 130 140
n

Figure 5. n—A phase diagram (top) showing the stability ranges for
the ground-state structures of quantum LJ, clusters (n = 31 to 147).
The points are taken from Table 2. They are connected for better
visualization. The question mark indicates the difficulty in distinguishing
between anti-Mackay and liquidlike structures for two-layer clusters.
Bottom: the corresponding n—7 phase diagram, which bears similarity
to the top figure. This diagram was constructed using the data from
refs 8 and 11.

For the classical two-layer LJ clusters (n < 55), only the I,(55)~
— Iy(13)" transition can be identified unambiguously and is
always accompanied by a sharp heat capacity peak. Furthermore,
this peak gradually changes as a function of cluster size and
continues into the size region (n > 45), where the structures
identified by I,(13)" with a single anti-Mackay overlayer do
not exist. That is, if one follows the I;(55) — I,(13)™ transition
as a function of cluster size, starting with small sizes (n = 31),
it gradually changes in character and for n > 55 merges with
the I,(55)" — L transition.

Figure 6 shows two examples of anti-Mackay, I,(55)7,
ground-state structures for n = 115 (the stability range is A €
[0.1116, 0.3540]) and n = 147 (A € [0.3102, 0.4121]). Although
the largest structure with a single-anti-Mackay overlayer sur-
rounding the 55-atom Mackay icosahedral core corresponds to
LJy;5 (having a perfect, nearly spherical shape), for n > 115,
structures with double-anti-Mackay overlayer can become
energetically favorable and are easily identified, as in the case
of LJ47. Note also ref 9, where two temperature-induced
structural transformations were observed for the classical L3
cluster, whose global minimum is a complete four-layer Mackay
icosahedron. In the latter work, the lower-temperature transition
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n=147

b side view,

Figure 6. Images of anti-Mackay, I;(55)", structures of LJ ;5 and LJ 47,
each characterizing the ground state of the corresponding cluster stable
over a certain A range. n = 115 is the largest cluster belonging to the
1,(55)" motif with a single anti-Mackay overlayer. For n > 115, the
extra atoms fill the next layer, forming a double anti-Mackay overlayer,
which can be seen in the side view.
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Figure 7. Attempt to find an effective temperature, 7, for the classical
LJ, clusters that represents the corresponding quantum system with
finite value of the quantum parameter A. The graph suggests that 7" ~
0.55A'2. The filled and open circles give, respectively, temperatures
and A values of the I;(55)" — L transition for n > 55. For n < 55, the
transition corresponds to I,(55)” — L; further decrease of n gradually
changes its character to the Iy(55) — I4(13)" transition. Other types
of classical/quantum transitions (not shown) do not match.

was interpreted as “surface roughening” of the overlayer
surrounding the 147-atom Mackay icosahedral core.

For the lack of both a rigorous and simple method, one is
often tempted to incorporate the quantum effects into the
molecular dynamics simulations by using an “effective tem-
perature”. The comparison of the classical n—T (A = 0) and
quantum n—A (T = 0) diagrams (cf. Figure 5) suggests that
such a mapping can be done on a certain level. In particular,
we found empirically that the effective temperature defined by
the relationship

T = 0.55A" (16)

results in good agreement between the classical, 7(n), and
quantum, A(n), melting curves. To demonstrate this in Figure
7, we plot the T and A values (scaled according to eq 16) of
the I,(55)" — L (n > 55) and 14(55)" — I(13)*/L (n < 55)
transitions. Unfortunately, the mapping (eq 16) is not universal
because it gives disagreement for some other types of transitions,
which display much greater size-sensitivity. Moreover, in the
n—T (A = 0) diagram, the I;(147)” — I;(55)" and I,(55)" — L
transition temperatures merge for n > 140, whereas in the n—A
(T = 0) diagram, these transitions for the same size range occur
at different values of the quantum parameter.

Another interesting parallel exists between the present n—A
diagram for the quantum LJ, clusters and n—p diagram for the
global minima structures of the classical Morse clusters,?$?
where p is the range of the Morse potential defined by
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Figure 8. Phase diagram constructed with data from ref 4 for Morse
clusters for the size range considered herein. “PI” labels the polyi-
cosahedral motif, characterized by two complete icosahedral cores stuck
together. Note that the LJ potential approximately corresponds to the
Morse potential with p ~ 6 (1/p ~ 1.667).
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Figure 9. Effect of increasing A on interatomic distance for several
different clusters, where rp;, defines the smallest interatomic distance
for a given cluster.

UMorse(r) — Eep(lfr/a)(ep(lfr/a) _ 2) (17)

The larger the p value, the shorter the range of the potential.
For example, approximating the LJ potential by the Morse
potential gives p &~ 6. Increasing the range of the potential
destabilizes the Mackay (relative to the anti-Mackay) structures.
Further increase in the range eventually makes the liquidlike
structures energetically most favorable. A recent paper” reports
a much more comprehensive n—p “phase diagram” for Morse
clusters. A relevant part of this diagram is shown in Figure 8.
In view of this comparison, we conclude that the quantum
delocalization, besides making the effective pair interaction
softer, also increases its range. The quantum order—disorder
transition in the present case has nothing to do with quantum
tunneling, nor does it involve any superfluidity because the
exchange symmetries are not taken into account within the
VGW approximation.

The increase in the range of the effective potential caused
by the increase in quantum delocalization results in turn in the
increase in the equilibrium interatomic distances in the cluster.
This effect is demonstrated in Figure 9, where the minimum
interatomic distance for different clusters is shown as a function
of A.



Effects of Quantum Delocalization on LJ Clusters

Whereas the n and A dependences of the ground-state
energies are featureless (and, therefore, not shown here), one
can gain some insight from looking at the energy differences,
or so-called “chemical potential”

u(n) = E(m) — E(n — 1) (18)
Local minima of u(n) correspond to more stable clusters relative
to their neighbors. The u(n) dependencies for values of A
corresponding to Xe, Ne, D,, and H, are shown in Figure 10.
As expected, the increase in A leads to the reduction of u(n).
Interestingly, strong correlations between the u(n) at different
values of A with respect to size ranges having the same structural
motif (i.e., Mackay) are clearly seen. For example, upon visual
inspection, the curves for A(Xe) and A(Ne) for the size range
corresponding to the I,(55)™ motif (n = 39 to 54), the oscillations
appear to be nearly identical, although the curves pertain to
significantly different quantum parameter. Conversely, no correla-
tion can be seen for the range on these two curves (n = 31 to 38)
that share different ground-state motifs. For the A(D,) and A(H,)
curves, in the range where both share the I;,(13)* motif, n = 31
to 55, the lines show the same general trends; that is, maxima
and minima correlate for both at respective n. This is in
contradiction with the results reported in ref 22 for (H,), and
(Dy), clusters using the PIGS method, where no correlations
exist between the H, and D, cases. These qualitatively different
behaviors can hardly be accounted for by the different interaction
potential used in the cited work.

Conclusions

In this article, we extended our previous studies of the
quantum-induced structural transitions in LJ, clusters to sizes
up to n = 147. A convenient measure of quantum effects is the
de Boer quantum delocalization length, A, which relates the
particle mass, A, and the two LJ parameters to the extent of
delocalization of the ground-state wave function. Consequently,
we constructed a n—A (T = 0) phase diagram that shows the
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7+ = 1,(55) Xe
1 A=0.01
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Figure 10. Chemical potential (r) (in units of €), as defined by eq
18, for the size range of 31—55 and for values of quantum parameter
(A) corresponding to those of Xe, Ne, D, and H,. The quantum effects
both reduce and soften the effective interaction between the particles,
which explains the trends seen. In addition, strong correlations between
the u(n) dependencies at different A values exist in regions that share
the same ground-state motif (indicated by color).

J. Phys. Chem. A, Vol. 113, No. 26, 2009 7401

ranges of stability of various structural motifs, such as Mackay
icosahedral, anti-Mackay icosahedral, and liquidlike (or disor-
dered) motifs. In addition, nonicosahedral structures are included
for several cluster sizes. A particularly new finding of the present
work is that the quantum delocalization eventually stabilizes
the liquidlike structures, besides favoring the icosahedral
structures over the nonicosahedral ones or, within the icosahedral
motif, favoring the anti-Mackay over Mackay structures.
Whereas we were able to distinguish the anti-Mackay and
liquidlike structural motifs clearly for three-layer clusters (n >
55), we were unsuccessful in doing so for smaller, two-layer
clusters. This problem may be resolved in the future if an
appropriate order parameter is found.

Our results indicate that the quantum delocalization, besides
softening, also effectively increases the range of the particle—
particle interaction, which happens to induce the same sequence
of structural transitions.*?*?’ Furthermore, the quantum n—A
(T = 0) phase diagram revealed similarities with the classical
n —T (A = 0) diagram,*!! which again supported the view that
the quantum-induced transitions are akin to the thermally
induced transitions. However, one should not go too far in trying
to account for the quantum effects by introducing the “effective
temperature” because the A — T mapping is not universal, that
is, not only is it size-specific but also the classical and quantum
diagrams have certain qualitative differences.

We believe that our results are generally correct for the
weakly quantum regime that at least includes the neon clusters,
but they may only be qualitatively correct for the more quantum
regime, perhaps starting with H, clusters. When the quantum
effects are sufficiently strong, the Gaussian approximation may
fail to describe the delocalized ground-state wave function
adequately. Moreover, it is believed that the particle exchange
symmetry becomes important, at least for hydrogen clusters and
may even result in superfluidity,”®*! whereas this effect is not
accounted for within the present approximation. At the same
time, because of the sampling problems, the PIMC and related
methods may be hard to apply in the weakly quantum regime,
whereas they become much better suited for the strongly
quantum regime.

Molecular beams of rare-gas clusters are commonly prepared
by a free jet expansion, as detailed in refs 30—34. The cluster
size distribution, particularly, the mean size, can be controlled
by tuning certain experimental parameters.’>}! However, meth-
ods for the structural characterization of clusters are limited, as
many techniques disrupt the fragile atomic arrangements, leading
to a loss of structural information.’>* Electron diffraction
methods have proven to be most successful in elucidating
structural data of rare-gas clusters and therefore serve as the
principle tool for examining cluster geometry.3*~3 In refs 30
and 31, electron diffraction was used to characterize the structure
of Ar, clusters effectively, where for 20 < n < 50, the
configurations were based on the polyicosahedral motif, whereas
for 50 < n < 750, the multilayer icosahedron was the principle
structure. The above authors also revealed the presence of two
subtypes that differ in the overlayer packing, where a regular
or (Mackay) ordering was encountered for n ~ 75 to 115
(yielding an incomplete icosahedron); for sizes n < 75, a more
disordered “twin” packing was observed.

It therefore seems feasible to extend the aforementioned
experimental methods to different cluster types and size ranges
to characterize their structure and substantiate our predictions
further. Further evidence of our findings could be obtained by
more systematic studies of Ar, and (more quantum) rare-gas,
for example, Ne,, or molecular, (D,), or (H,),, clusters.
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